SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583 <u>QUESTION BANK (DESCRIPTIVE)</u>

Subject with Code : Engineering Mathematics-III (16HS612)

Year &Sem:II-B.Tech& I-Sem Regulation: R16 Course & Branch: B.Tech Com to all

<u>UNIT – I</u>

1.	a) Show that $w = \log z$ is analytic everywhere except at the origin and find $\frac{dw}{dz}$.	[5M]
	b) If $f(z)$ is analytic function of z prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) log f(z) = 0$	[5M]
2.	a) Show that $u = \frac{x}{x^2 + y^2}$ is harmonic.	[5M]
	b) Find the analytic function whose imaginary part is $e^{x}(xsiny + ycosy)$.	[5M]
3.	a) Determine p such that the function $f(z) = \frac{1}{2}\log(x^2 + y^2) + itan^{-1}\left(\frac{px}{y}\right)$ be an analytic	ic.[5M]
	b) Find all the values of k, such that $f(z) = e^x (\cos ky + i \sin ky)$	[5M]
4.	a) If $f(z) = u + iv$ is an analytic function of z and if $u - v = e^{x}(\sin x - \cos y)$ find	
	f(z) in terms of z.	[5M]
	b) Find the analytic function $f(z)$ whose real part is $e^x(x \sin y + y \cos y)$.	[5M]
5.	a)Show that $f(z) = z + 2\overline{z}$ is not analytic anywhere in the complex plane. [5M]	
	b)Show that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2} = 4 \frac{\partial^2}{\partial z^2 \overline{z}}$	[5M]
6.	a) Evaluate line integral $\int f(z) dz$ where $f(z) = y - x - 3x^2i$ and C consists of two	
0.	Straight line segments one from $z = 0$ to $z = i$ and the other from $z = i$ to $z = 1 + i$	[5M]
	b) Evaluate $\int \frac{\cos z - \sin z}{(z+i)^3} dz$ with C: $ z = 2$ using Cauchy's integral formula.	[5M]
7.	Calculate $\int f(z) dz$ where $f(z) = \pi exp\pi \bar{z}$ and C is boundary of the square with vertices	
7.	the points $0, 1, 1 + i, \& i$ where c being in the clockwise direction	[10M]
8.	Evaluate $\int_{0}^{1+3i} (x^2 - iy) dz$ along the paths. i) $y = x$ ii) $y = x^2$	[10M]
9.	a) Evaluate $\int \frac{\sin^2 z}{\left(z - \frac{\pi}{6}\right)^3} dz$ where $C: z = 1$	[5M]
	b) Evaluate $\int \frac{\log z}{(z-1)^3} dz$ where $C: z-1 = \frac{1}{2}$ using Cauchy's integral formula.	[5M]
10	if C denotes the boundary of the square whose sides lie along the lines $x = \pm 2$, $y = \pm 2$	
	Where c is described in the positive sense, evaluate the integrals	
	$i) \int \frac{e^{-z}}{\left(z - \frac{\pi i}{2}\right)} dz \qquad \qquad ii) \int \frac{\cos z}{z(z^2 + 8)} dz \qquad \qquad [10M]$	

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583 <u>QUESTION BANK (DESCRIPTIVE)</u>

Subject with Code :Engineering Mathematics-III (16HS612)

Year &Sem:II-B.Tech& I-SemRegulation: R16 Course & Branch: B.Tech Com to all

<u>UNIT – II</u>

]	l.	a) Determine the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and the residues at each pole	[5M]
		b) Find the residue of the function $f(z) = \frac{1}{(z^2+4)^2}$ where c is $ z-i = 2$.	[5M]
4	2.	a) Find the residues of $f(z) = \frac{z^2}{1-z^4}$ at these singular points which lies inside the circle	
		z = 1.5	[5M]
		b) Find the residues of $f(z) = \frac{z^2}{z^2 + a^2}$ at $z = ai$	[5M]
	3.	a) Determine the poles of the function $f(z) = \frac{z^2+1}{z^2-2z}$ and the residues at each pole	[5M]
		b) Determine the poles and residues of tan <i>hz</i> .	[5M]
2	1.	a) Evaluate $\int_{-\infty}^{\infty} \frac{\cos ax}{x^2+1} dx$, $a > 0$	[5M]
		b) Find the residue of the function $f(z) = \frac{2e^z}{(z-3)z}$ where c: $ z = 2$.	[5M]
4	5.	Evaluate $\int_0^{\pi} \frac{1}{a+b\cos\theta} d\theta = \frac{\pi}{\sqrt{a^2-b^2}}$, $a > b > 0$	[10M]
6	5.	Show that $\int_0^{2\pi} \frac{\cos 2\theta}{1+2a\cos\theta+a^2} d\theta = \frac{2\pi a^2}{1-a^2}$, $(a^2 < 1)$ using residue theorem.	[10M]
	7.	a) Find the bilinear transformation which maps the point's $(\infty, i, 0)$ in to the points $(0, i, \infty)$ b) Find the bilinear transformation that maps the point's $(0, 1, i)$ in to the points $1 + i, -i$,	o)[5M]
		2 - iin w-plane	[5M]
8	3.	a) By the transformation $w = z^2$, show that the circles $ z - a = c$ (a, c being real) in the	
		Z-plane corresponds to the limacons in the w-plane	[5M]
		b) Find the image of the region in the z-plane between the lines $y = 0 \& y = \frac{\pi}{2}$ under the	
		transformation $w = e^z$.	[5M]
Ç).	a) Find the bilinear transformation which maps the points $(\infty, i, 0)$ in to the points $(-1, -1, 1)$ inw-plane. [5M]	
		b) Find the bilinear transformation that maps the point's $(1, i, -1)$ in to the points $(2, i, -1)$.2)
		in w-plane	[5M]
]	10.	a) The image of the infinite strip bounded by $x = 0 \& x = \frac{\pi}{4}$ under the transformation	
		$W = \cos z$	[5M]
		b) Prove that the transformation $w = \sin z$ maps the families of lines $x = y = constant$	[]
		into two families of confocal central conics.	[5M]
			r1

QUESTION BANK 2018

<u>UNIT –III</u>							
1. Find a positive root of $x^3 - x - 1 = 0$ correct to two decimal places by bisection method. [10]							
2. Find out the so	2. Find out the square root of 25 given $x_0 = 2.0$, $x_0 = 7.0$ using bisection method. [10 M]						
3. Find out the ro	3. Find out the root of the equation $x \log_{10}(x) = 1.2$ using false position method. [10 M]						
4. Find the root of	of the equ	nation xe ^x	= 2 usin	g Regula-	falsi method.[10 M]		
5. Find a real ro	ot of the	equation	$xe^x - \cos x$	x = 0 usin	g Newton- Raphson method.	[10 M]	
6. Using Newtor	n-Raphso	n Method					
a) Find square r	oot of 10	. [5 M	[]		b)Find cube root of 27	.[5 M]	
7. Using Newtor following data, I		-			and the polynomial $y = tanx$	satisfying the	
X 0.10 Y 0.10	0.1	5 0.2	0.2	5 0.3		[10M]	
8. a) Using Newtons forward interpolation formula. , and the given table of values							
X	1.1	1.3	1.5	1.7	1.9		
f(x)	0.21	0.69	1.25	1.89	2.61		
Obtain the value of $f(x)$ when $x=1.4$ [5M]							
b) Evaluate $f(10)$ given $f(x) = 168,192,336$ at $x = 1,7,15$ respectively,							
use Lagrange interpolation. [5 M]							
 9. a) Use Newton's Backward interpolation formula to find f(32)givenf(25) = 0.2707, f(30) = 0.3027f(35) = 0.3386, f(40) = 0.3794 [5M] b) Findthe unique polynomial P(X) of degree 2 or less such that P(1) = 1 P(3) = 27, P4 = 64 using Lagrange's interpolation formula. [5M] 10. a)Using Lagrange's interpolation formula, find the parabola passing through the points (0,1), (1,3) and (3,55) [5M] b) For X = 0,1,2,4,5; f(X) = 1,14,15,5,6 find f(3) using forward difference table. [5M] 							

<u>UNIT –IV</u>

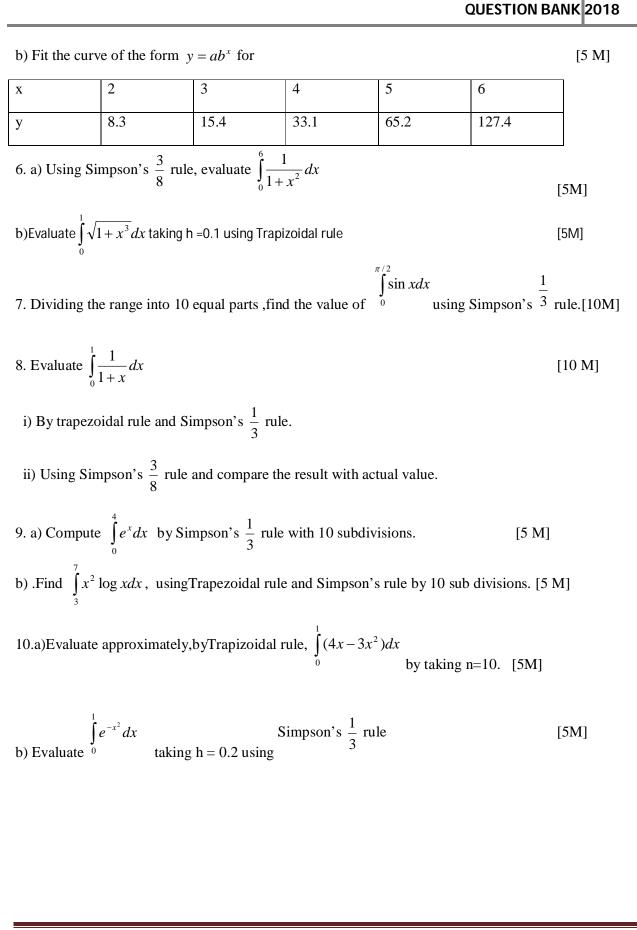
1.Fit the	1. Fit the curve $y = ae^{bx}$ to the following data.							[10 M]		
x	0	1	2	3	4	5	6	7	8	
у	20	30	52	77	135	211	326	550	1052	

EM – III

QUESTION BANK 2018 2.a)Fit the exponential curve of the form $y = ab^x$ for the data [5 M] 1 2 3 4 х 7 17 27 11 у b) Fit a straight line y=a+bx from the following data [5 M] 2 0 1 3 4 Х 1 1.8 3.3 4.5 6.3 y 3. a) Fit a second degree polynomial to the following data by the method of **least squares** [10 M] 0 2 3 4 Х 1 1 1.8 1.3 2.5 6.3 у b) Fit a straight line y=ax+b from the following data [5 M] 7 7 6 8 8 8 9 9 10 Х 5 5 4 5 4 3 4 3 3 у 4. Fit a Geometric curve to the following data [5M] 2 4 6 1 Х у 6 4 2 2 and estimate y(2.5)b) Fit a second degree polynomial to the following data by the method of **least squares** [5 M] 0 1 2 3 4 Х 5 10 22 38 1 у 5. a) Fit the curve of the form $y = ae^{bx}$ [5 M] 77 100 185 239 285 Х

у

2.4


3.4

7.0

11.1

19.6

Page 4

EM – III

Page 5

QUESTION BANK 2018

<u>UNIT –V</u>

1.a) Tabulate y (0.1), y (0.2), and y (0.3) using Taylor's series method given that	[5 M]
$y^1 = y^2 + x$ and $y(0) = 1$	

b) Find the value of y for x=0.4 by Picard's method given that
$$\frac{dy}{dx} = x^2 + y^2$$
, y(0)=0 [5 M]

2. Using Taylor's series method find an approximate value of y at x = 0.2 for the [10M]

D.E $y^1 - 2y = 3e^x$, y(0) = 0. Compare the numerical solution obtained with exact solution.

3.a)Solve
$$y^1 = x + y$$
, given y (1)=0 find y(1.1) and y(1.2) by Taylor's series method [5 M]

b) Obtain y(0.1) given
$$y^1 = \frac{y - x}{y + x}$$
, y(0)=1 by Picard's method. [5 M]

4.a) Given that
$$\frac{dy}{dx} = 1 + xy$$
 and y (0) =1 compute y(0.1), y(0.2) using Picard's method [5 M]

b) Solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x}$ given y(1) = 2 and find y(2). [5M]

5.a)Using Runge-Kutta method of second order, compute y(2.5) from $y^1 = \frac{y+x}{x}$

b) Solve numerically using Euler's method $y' = y^2 + x$, y(0)=1. Find y(0.1) and y(0.2) [5M]

6. a)Using Euler's method, solve numerically the equation y¹=x+y, y(0)=1 [5M]
b)Solve y¹= y-x², y (0) =1 by picard's methodupto the fourth approximation. [5 M]
Hence find the value of y (0.1), y (0.2).

- 7.a) Use Runge- kutta method to evaluate y(0.1) and y(0.2) given that $y^1 = x+y$, y(0)=1 [5 M]
 - b) Solve numerically using Euler's method $y' = y^2 + x$, y(0) = 1. Find y(0.1) and y(0.2) [5 M]
- 8. a)Using R-K method of 4th order, solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$, y(0)=1 Find y(0.2) and y(0.4) [6 M]

b)Obtain Picard's second approximate solution of the initial value problem [4M]

$$\frac{dy}{dx} = \frac{x^2}{y^2 + 1}, y(0) = 0$$

EM – III

QUESTION BANK 2018

[5 M]

9. Using R-K method of 4th orderfind y(0.1), y(0.2) and y(0.3) given that $\frac{dy}{dx} = 1 + xy, y(0) = 2$ [10M]

10. a)Find y(0.1) and y(0.2) using R-K 4th order formula given that $y^1 = x^2 - y$ and y(0)=1 [5 M]

b) Using Taylor's series method, solve the equation $\frac{dy}{dx} = x^2 + y^2$

for x = 0.4 given that y = 0 when x = 0.

Page 7

EM – III